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Abstract. In this article, we build upon the pioneering work of Abraham Temkin (1919-2007), who introduced a 

novel separation of variables method for non-stationary heat conduction in the 1960s. Our extension applies this 

method to the hyperbolic heat equation, incorporating a relaxation term. The hyperbolic heat equation, a partial 

differential equation combining features of both hyperbolic and parabolic equations, finds wide applications across 

various scientific fields, including physics, engineering, geophysics, medical imaging, and more. Our investigation 

centres on the application of the Temkin’s method to the hyperbolic heat equation, with the aim to provide insights 

into its effectiveness in solving direct and inverse problems. The method relies on the observation that for non-

stationary heat conduction with dynamic boundary conditions, the influence of initial conditions on the 

temperature distribution diminishes over time. Consequently, it is reasonable to assume that the temperature 

distribution is primarily influenced by the time-dependent boundary conditions. By expressing the solution to the 

given problem as a series, where each term is a product of a derivative of the given boundary condition and an 

unknown function P dependent on a spatial variable, we obtain a set of ordinary differential equations. These 

equations lead us to deduce the spatial functions, which are found to be polynomial in nature. While this approach 

holds promise for formulating an inverse problem to determine the speed of propagation, our current numerical 

results are inconclusive. 
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Introduction 

Both parabolic and hyperbolic heat equations are fundamental models for heat transfer phenomena, 

each offering distinct properties and applications. While the parabolic heat equation provides a standard 

framework for many heat conduction problems, the hyperbolic heat equation, often referred to as the 

relativistic hyperbolic equation, offers notable advantages. Unlike the parabolic equation, the hyperbolic 

equation accounts for the finite propagation speed of heat waves, making it particularly suitable for 

scenarios characterized by rapid temperature changes and wave-like behaviour. Consequently, 

understanding hyperbolic heat conduction is crucial for various engineering and scientific applications, 

with research focusing on direct and inverse analysis methods. 

Significant contributions to the field have been made by researchers worldwide, including works 

like [1-3]. In the latter of these studies, for example, various heat equations including the parabolic heat 

equation based on the Fourier’s theory, the hyperbolic heat equation, and the relativistic heat equation 

are solved analytically for modelling thermal ablation of biological tissues and the temperature 

distributions compared. Additionally, inverse problems for the hyperbolic heat equation have been 

explored in studies such as [5]. Moreover, implementations of hyperbolic thermal conduction in 

smoothed particle hydrodynamics, a computational method primarily used in fluid dynamics, have been 

investigated, e.g. in [4]. 

Our paper introduces the Temkin’s method, a novel separation of variables technique tailored for 

solving heat conduction equations in one-dimensional finite domains. While traditional approaches like 

finite difference schemes have limitations, the Temkin’s method offers a promising alternative. 

Mathematical model of direct problem 

We consider a one-dimensional problem of heat propagation over a finite domain bounded by 

𝑥 =  0 and 𝑥 =  𝑙 , where 𝑙 denotes the length of the segment, and the temperature field 𝑢(𝑥, 𝑡) in this 

case is governed by 

 

 (1)

 

Here 𝑐 =  √
𝑘

𝜏
 is its characteristic speed, 𝑘 is the thermal diffusivity and 𝜏 is a relaxation time which 

depends on the mechanism of heat transport. 

𝜕2𝑢

𝜕𝑡2  +  
1

𝜏

𝜕𝑢

𝜕𝑡
 =  𝑐2 𝜕2𝑢

𝜕𝑥2, 𝑥 ∈ (0, 𝑙), 

𝑡 >  0  
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Let us assume that the behaviour of the function 𝑢(𝑥, 𝑡) is governed by the following conditions – 

initial conditions, representing the initial temperature distribution and temperature flux within the 

interval at 𝑡 =  0: 

 
  (2)

 

and boundary conditions, imposing the temperature at the 𝑥 -boundaries of the interval: 

 𝑢(0, 𝑡) =  0, 𝑢(𝑙, 𝑡) =  𝑢1(𝑡)  (3) 

As per [6], the analytical solution of the problem (1)-(3) is a function that is defined by this formula 

 

   

(4)

 

Assuming that 𝑐2𝜋2𝑛2 −
𝑙2

4𝜏2  ≤  0 for 𝑛 =  1, 𝑚 and 𝑐2𝜋2𝑛2 −
𝑙2

4𝜏2  >  0 for 𝑛 =  𝑚 +  1, ∞, the 

so-called Green’s function for this hyperbolic heat equation problem is defined by 

    

(5)

 

where  𝛽𝑛 =  
1

4𝜏2 −
𝑐2𝜋2𝑛2

𝑙2  and 𝜆𝑛 =  
𝑐2𝜋2𝑛2

𝑙2 −
1

4𝜏2. 

There are several techniques available for solving partial differential equations, with the Green’s 

function method being just one example. Another commonly employed approach is the method of 

separation of variables. The primary objective of this method is to simplify the solution process for 

partial differential equations by decomposing them into simpler ordinary differential equations. This is 

achieved by expressing the solution as a sum or product of functions, each depending on only one 

independent variable. The separation of variables method, originally proposed by A.Temkin [7] and 

utilized in many works (e.g. in [8-10]), is applied herein to address the given problem (1)-(3). This 

method assumes that the solution takes the form: 

 𝑢(𝑥, 𝑡) =  ∑ 𝑃𝑛(𝑥)𝑇𝑛(𝑡)∞
𝑛 = 0   (6) 

where 𝑇𝑛(𝑡) refers to the 𝑛𝑡ℎ derivative of the boundary condition (3) with respect to 𝑥 evaluated 

at 𝑥 =  𝑙 : 

   
(7)

 

but functions 𝑃𝑛(𝑥) depend on 𝑥 . 

Substitution of (6) into the hyperbolic heat equation (1) gives: 

   

(8)

 

where primes represent differentiation with respect to the appropriate argument. Considering that 

𝑇𝑖
′(𝑡) =  𝑇𝑖 + 1(𝑡) (from (7)), equation (8) yields a system of these ordinary differential equations for 

𝑃𝑛(𝑥): 

𝑢(𝑥, 0) =  0, 
𝜕𝑢

𝜕𝑡
(𝑥, 0) =  0, 𝑥 ∈ (0, 𝑙) 

𝑢(𝑥, 𝑡) =  − 𝑐2 ⋅ ∫ 𝑢1(𝜄) [
𝜕𝐺(𝑥, 𝜉, 𝑡 − 𝜄)

𝜕𝜉
]

𝜉 = 𝑙

𝑡

0

𝑑𝜄 

𝐺(𝑥, 𝜉, 𝑡) =  
2

𝑙
𝑒−

𝑡
2𝜏 ⋅ ∑ sin (

𝜋𝑛𝑥

𝑙
) sin (

𝜋𝑛𝜉

𝑙
)

sinh(𝑡√𝛽𝑛)

√𝛽𝑛

𝑚

𝑛 = 1

 +   

 +   
2

𝑙
𝑒−

𝑡
2𝜏 ⋅ ∑ sin (

𝜋𝑛𝑥

𝑙
) sin (

𝜋𝑛𝜉

𝑙
)

sin(𝑡√𝜆𝑛)

√𝜆𝑛

∞

𝑛 = 𝑚 + 1

 + 

𝑇𝑛(𝑡) =  
𝜕𝑛𝑢

𝜕𝑡𝑛
(𝑙, 𝑡) and 𝑇0 =  𝑢1(𝑡), 

𝑃0(𝑥)𝑇0
′′(𝑡) +  

1

𝜏
𝑃0(𝑥)𝑇0

′(𝑡) +  𝑃1(𝑥)𝑇1
′′(𝑡) +  

1

𝜏
𝑃1(𝑥)𝑇1

′(𝑡) +   

𝑃2(𝑥)𝑇2
′′(𝑡) +  

1

𝜏
𝑃2(𝑥)𝑇2

′(𝑡) +  𝑃3(𝑥)𝑇3
′′(𝑡) +  

1

𝜏
𝑃3(𝑥)𝑇3

′(𝑡) +  …  =   

 =   𝑐2(𝑃0
′′(𝑥)𝑇0(𝑡) +  𝑃1

′′(𝑥)𝑇1(𝑡) +  𝑃2
′′(𝑥)𝑇2(𝑡) +  𝑃3

′′(𝑥)𝑇3(𝑡) +  … ), 
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(9)

 

Inserting (6) into the boundary conditions (3), we find: 

𝑃0(0)𝑇0(𝑡) +  𝑃1(0)𝑇1(𝑡) +  𝑃2(0)𝑇2(𝑡) +  𝑃3(0)𝑇3(𝑡) +  …  =  0 

and  

𝑃0(𝑙)𝑇0(𝑡) +  𝑃1(𝑙)𝑇1(𝑡) +  𝑃2(𝑙)𝑇2(𝑡) +  𝑃3(𝑙)𝑇3(𝑡) +  …  =  𝑢1(𝑡) 

which gives 

 𝑃𝑖(0) =  0 for 𝑖 =  0, ∞  (10) 

 𝑃0(𝑙) =  1, 𝑃𝑖(𝑙) =  0 for 𝑖 =  1, ∞  (11) 

Solving the system of equations (9) applying the boundary conditions (10)-(11) results into 

   

(12)

 

Hence, we obtain a solution to the original problem (1)-(3) in the form described by equation (6), 

with spatial functions 𝑃𝑛(𝑥) given by equations (12). 

Mathematical model of inverse problem 

In a manner akin to our approach detailed in paper [10], we frame the inverse problem as a 

coefficient inverse problem where we want to determine the coefficient 𝑐 . One way to go around this is 

to use the solution provided by the Temkin’s method. In this approach, we approximate the infinite 

series by means of a finite series containing the first 𝑀 terms. If we have knowledge of the temperature 

at an inner point 𝜉∗ within the interval (0, 𝑙), the approximation becomes 

   

(13)

 

If 𝑀 ≥  2 , the expression (13) becomes nonlinear with respect to 
1

𝑐2. To maintain the linearity, let 

us consider only the first two terms of the series, and the equation (13) becomes  

  

When solving this for 𝑐2, we get 

  

 (14)

 

 

𝑃0
′′(𝑥) =  0 

1

𝜏
𝑃0(𝑥) =  𝑐2𝑃1

′′(𝑥) 

𝑃𝑖−1(𝑥) +  
1

𝜏
𝑃𝑖(𝑥) =  𝑐2𝑃𝑖 + 1

′′ (𝑥) for 

𝑖 =  1, ∞  

𝑃0(𝑥) =  
𝑥

𝑙
 

𝑃1(𝑥) =  
1

𝑐2𝜏
(

𝑥3

6𝑙
−

𝑙𝑥

6
) 

𝑃2(𝑥) =  
1

𝑐2
(

𝑥3

6𝑙
−

𝑙𝑥

6
 +  

1

𝑐2𝜏2 (
𝑥5

120𝑙
−

𝑙𝑥3

36
 +  

7𝑙3𝑥

360
)) 

etc. 

 

𝑢(𝜉∗, 𝑡) =  ∑ 𝑃𝑛(𝜉∗)𝑇𝑛(𝑡)

𝑀

𝑛 = 0

 

𝑢(𝜉∗, 𝑡) =  
𝜉∗

𝑙
𝑢1(𝑡) +  

1

𝑐2𝜏
(

𝜉∗3

6𝑙
−

𝜉∗𝑙

6
) 

𝑐2 =  
(

𝜉∗3

6𝑙
−

𝜉∗𝑙
6 ) 𝑢1

′′(𝑡)

𝜏2 (𝑢(𝜉∗, 𝑡) −
𝜉∗

𝑙
𝑢1(𝑡))
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Results and discussion 

We have conducted numerical experiments to solve the direct problem (1) - (3) with boundary 

conditions using solutions (4), (5) and (6), (12), as well as for the inverse problem. For these 

experiments, we selected specific parameter values 𝑘 =  10−4, 𝑙 =  0.02 𝑚 , 𝜔 =  0.02 , 𝜏 =  10−6, 

𝐴 =  2 , set the initial condition to be  

𝑢1 =  𝐴 sin (𝜔𝑡 +  
3𝜋

2
)  +  𝐴 

and investigated the problem over the time interval [0,320]. 

In Fig. 1 we have functions 𝑃𝑛(𝑥). These graphs suggest that the functions tend towards zero as 

𝑛 increases. 

 

Fig. 1. Functions 𝑃𝑛 

As for the function 𝑢(𝑥, 𝑡), we have the graph in Fig. 2 for the solution (4), (5), when taking the 

four terms of the series, and Fig. 3 for the solution found using the Temkin’s method when taking the 

first five terms of the series. 

 

Fig. 2. Exact solution using the Green’s function method 
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Fig. 3. Exact solution using the Temkin’s method 

Conclusions 

1. The application of the Temkin’s method to hyperbolic heat equations may be viable under certain 

conditions, particularly when considering a greater number of terms in the series. 

2. One notable advantage of the Temkin’s method is its relative simplicity compared to alternative 

approaches for solving direct hyperbolic equations. Our findings indicate that when applying the 

Temkin’s method to the direct problem of the hyperbolic heat equation, it leads to quicker results 

compared to the traditional Green’s function method. 

3. While this study has focused primarily on solving the direct problem of the hyperbolic heat 

conduction equation using the Temkin’s method, it is important to note that the second and third 

boundary conditions were not explicitly considered in this analysis. 

4. Further investigation is required for the inverse coefficient problem, as the current numerical results 

are inconclusive. 
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